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Abstract
We present numerical evidence that dynamical physical processes that develop a
time-dependent characteristic length, and take place in fractal media exhibiting
spatial discrete scale invariance (DSI) with fundamental scaling ratio b, may
become coupled to the topology of the fractal leading to the observation of time
DSI. The hallmark of time DSI is the observation of a log-periodic modulation
of the dynamic or kinetic observables, which is characterized by a well-defined
fundamental time scaling ratio (τ ). Both fundamental scaling ratios are linked
according to b = τ 1/z, where z is the dynamic exponent characteristic of the
physical process. Specifically, we have studied the epidemic behaviour of
the contact process (CP) in Sierpinski Carpets. The CP exhibits second-order
irreversible phase transitions between an active regime and an absorbing state
where the system is trapped without any escape possibility. We observed
that relevant dynamic observables, such as the number of active sites, the
survival probability of the epidemics and the mean square displacement of
the epidemic from the origin (R2(t)), exhibit log-periodic modulations. By
fitting the data we evaluate the fundamental time scaling ratio for various
fractals and the corresponding dynamic exponents. Since, at criticality, one
has that R2(t) ∝ t2/z, an independent estimation of the dynamic exponent
can be performed, in excellent agreement with results obtained by using the
conjectured relationship for the fundamental scaling ratios b and τ .

PACS numbers: 64.60.Ht, 02.50.Ey, 05.50.+q, 05.10.Ln

1. Introduction

The study of far-from equilibrium processes and systems is a topic of interdisciplinary research
that even nowadays possesses a formidable challenge [1, 2]. Within this broad context,
considerable attention has recently been drawn to the study of irreversible phase transitions
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(IPTs) that take place between an active—fluctuating—state and an absorbing state where
the activity stops, i.e. a configuration that can be reached by the dynamics but cannot be left
[3–7]. The occurrence of IPTs has been reported in a great variety of models including, among
others, directed percolation [3–6], catalytic reactions [5–7], forest-fire models [8], branching
annihilating random walkers with an odd number of offsprings [9], epidemic spreading without
immunisation [10], prey–predator systems [11], the Domany–Kinzel cellular automata [12],
the contact process [3–6], etc (for reviews see [4–7]).

Continuous second-order IPTs share many characteristics with their equilibrium
counterparts. In fact, they exhibit a diverging correlation length when the control parameter
approaches criticality. Consequently, relevant observables exhibit scale-invariance and obey
power-law functions with well-defined exponents. These exponents can be grouped into
sets that define universality classes [4–7]. So far, the most ubiquitous universality class for
IPTs is directed percolation [5, 6]. By taking advantage of the existence of a diverging
correlation length, a finite-size scaling theory, conceptually similar to that used for the
description of equilibrium transitions [13], can be formulated for the study of IPTs by means
of numerical simulations [5]. However, as the critical point is approached and fluctuations
become enhanced, the system may irreversibly fall into the absorbing state—even for values
of the control parameter laying within the active regime—hindering the clean application of
the finite-size scaling approach. This shortcoming can be overcome by performing a special
kind of dynamic measurement generically called epidemic studies [14]. The idea behind the
epidemic approach is to initialize the simulation by using a configuration very close to the
absorbing state. For this purpose one actually starts with the absorbing state slightly modified
by removing (adding) few particles from (to) a place close to the centre of the sample, when
such a state is a fully occupied (vacuum) one. Subsequently, the system is allowed to evolve
according to the particular rules of the model under consideration. During this dynamic
process the following quantities are recorded: (i) the average number of empty (occupied)
sites N(t) for fully occupied (vacuum) absorbing states, (ii) the survival probability P(t),
which is the probability that the epidemic is still active at time t, and (iii) the average mean
square distance, R2(t), over which the epidemic has spread. It is worth mentioning that each
single epidemic stops if the sample becomes trapped in the absorbing state, so that results have
to be averaged over many different epidemics. Also, note that N(t) (R2(t)) is averaged over
all (surviving) epidemics.

By performing the epidemic close to the critical point (pc) of a second-order IPT, say
at a generic distance ε, power-law behaviour due to scale invariance can be assumed and the
following Ansatzen are expected to hold:

N(t) ∝ tηN∗(εt1/ν‖), (1)

P(t) ∝ t−δP ∗(εt1/ν‖), (2)

and

R2(t) ∝ t zeR∗(εt1/ν‖), (3)

where η, δ and ze
1 are dynamical critical exponents, ν‖ is the correlation length exponent

in the time (growing) direction, and N∗, P ∗ and R∗ are scaling functions [14]. Thus, at the
critical point one has ε = 0 and the scaling functions adopt constant values, so log-log plots
of N(t), P (t) and R2(t) will asymptotically show straight-line behaviour, while off-critical
points will exhibit a curvature. By taking advantage of this behaviour one can evaluate quite

1 We identify ze as the dynamic epidemic exponent, which may be different from the standard dynamic exponent (z)

that is used in the study of second-order transitions.
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accurately both the critical point and the dynamic exponents [14]. It should be noted that by
preventing the epidemic to reach the boundary of the sample one obtains critical values free
of undesired finite-size effects.

IPTs have been studied not only in regular lattices [4–7], but also in some fractals [5]
such as Sierpinski Carpets [15–18], percolation clusters [19, 20], diffusion limited aggregates
[21], etc. In fact, for some physical situations a regular lattice may not be appropriate to give a
realistic description of the underlying media where the physical process actually takes place,
e.g. for a catalytical reaction in a fractal catalyst, the propagation of a disease in a complex
network, etc. Focusing our attention to the dynamic behaviour of IPTs in fractal media—
more specifically in the epidemic behaviour—it should be expected that under appropriated
conditions, e.g. when the fractal exhibits discrete scale invariance (DSI) [22], the dynamical
evolution of some observables may become somewhat coupled to some topological property
of the underlying substrata. In fact, DSI is a weak kind of scale invariance such that an
observable O(x), which is a function of a control parameter x, obeys the scaling law

O(x) = µ(b)O(bx), (4)

under the change x → bx. Here b is no longer an arbitrary real number, as in the case of
continuous scale invariance, but it can only take specific discrete values of the form bn = (b1)

n,
where b1 is a fundamental scaling ratio. If an observable O(x) satisfies equation (4) for an
arbitrary b, it necessarily has to obey a power law of the type O(x) = Cxα , where α is an
exponent. But in the case of DSI, the solution of equation (4) yields

O(x) = xαF

(
log(x)

log(b1)

)
, (5)

where F is a periodic function of period one.
Within this context, the purpose of this paper is to develop a conjecture linking the

spatial DSI of fractals with the observation of time DSI in dynamic observable of physical
phenomena occurring on these media. Time DSI would become evident by the occurrence
of the log-periodic modulation of the dynamic or kinetic observable exhibiting power-law
behaviour, similar to the case of equation (5) but in the time domain. Furthermore, we will test
the conjecture by means of extensive computer simulations analysed with the aid of scaling
arguments. For this purpose we have chosen to study the epidemic behaviour of the contact
process (CP) [3, 23] in Sierpinski Carpets of different fractal dimensions. The CP is an
archetypical example of interacting particle systems exhibiting IPTs [3].

It is worth mentioning that the interplay between the spatial DSI and the kinetics of random
walks leads to the occurrence of log-periodic oscillations in the return probabilities, as has first
been demonstrated analytically by Grabner and Woess [24] for the case of fully symmetric
Sierpinski gaskets. They evidenced the oscillation phenomena by applying a technique early
developed by Flajolet and Odlyzko [25] studying the singularity of the Green function at z = 1.
These results have then been extended by Krön and Teufl [26] to a large class of mathematical
fractals (cell graphs) where some more details on the application of the technique based on the
singularities in Green functions can be found, together with additional mathematical literature
on these topics. Furthermore, we have shown [27], by means of numerical simulations, that
the oscillatory behaviour becomes also evident in the number of distinct sites visited by the
random walk, as well as in diffusion-controlled reactions among walkers occurring in fractal
media exhibiting spatial DSI.

The paper is organized as follows: in section 2, we provide the definition of the contact
process and give a brief description of the simulation method. The main characteristics of
the used fractals are also presented in section 2. Section 3 is devoted to the discussion of the
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concept of DSI while our results are presented and discussed in section 4. Finally, we state
our conclusions in section 5.

2. The contact process on fractal media and the simulation method

The contact process (CP), originally introduced by Harris [23], is a simple model for the spread
of epidemics through a network or lattice. The network, usually taken to be a hyper-cubic
lattice, the nodes or sites can be in one of the two states: ‘infected’ (occupied, (σi(t) = 1))
or ‘susceptible’ (vacant σi(t) = 0). Transitions from σi = 1 to σi = 0 occur spontaneously
with probability λ, independent of the neighbouring sites. On the other hand, the reverse
transition, from σi = 0 to σi = 1, takes place with probability 1 − λ. In this case an occupied
site creates autocatalytically a new one, in a randomly selected vacant nearest-neighbour
site. Thus the state σi = 0 for all i is absorbing and, in all dimensions, the CP undergoes
a continuous (second-order) IPT into an absorbing state such as the system becomes trapped
into the vacuum state. Also, λ is a control parameter governing the rate of spreading of the
activity and λc is the critical point for the IPT.

Although no exact results are available, the CP has been studied intensively via series
expansion [3, 4, 28] and Monte Carlo simulations [3–6, 29]. The model has attracted much
interest as a prototype of a nonequilibrium critical point, a simple representative of the directed
percolation (DP) universality class and its scaling properties have been discussed extensively
[4–6].

In this paper, the CP is studied in Sierpinski Carpets, which are built up by segmenting
a square in b2 subsquares and removing c2 of them from the centre (SC(b, c)). This
segmentation process is iterated in the remaining subsquares a number k of steps, and the
mathematical fractal is obtained after an infinite number of segmentation steps. Nevertheless,
in order to perform the simulations one has to use a finite segmentation step, which has to be
large enough for the observables to become almost independent of k. On the other hand, by
increasing b and c it is possible to decrease the fractal dimension of the SC(b, c), which is
given by df = log(b2−c2)

log b
. In this way one also increases the size of the holes in the structure,

and one then says that the lacunarity is larger. As a consequence of the described iterative
process, the topological details of the generating cell are present in any scale, and then the
structure is scale invariant only for a well-defined spatial scaling ratio b.

3. Spatial and temporal discrete scale invariance

In order to develop a preliminary argument, let us recall that a typical average size of an
epidemic (ξ ) obeys the following relationship,

ξ ∝ t1/z, (6)

where z is the dynamic exponent linking space and time, as used within the context of standard
second-order transitions (see footnote 1). It should be noted that z differs from the dynamic
spreading exponent ze defined in the context of equation (3), but by comparing equations (3)
and (6) it can easily be shown that both exponents are linked, such that ze = 2/z.

Now, let us consider those fractals obeying discrete scale invariance [22] and consequently
exhibiting log-periodic oscillations of some observables as a function of the distance to a given
point (see equation (5)), e.g. the number of sites of the fractal within a circle of a given radius,
as shown in figure 1 for the fractals used in this paper. The insets, which clearly show the
shape of the oscillations, are obtained by plotting the number of sites of the fractal, already
shown in the main panel, but after subtracting and normalising the data by πRdf versus R,
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(a)

(b)

(c)

Figure 1. Log–log plot of the number of fractal sites within a circle of given radii m(R, r0), as
obtained for the fractals whose generating cell is shown in the upper-left corner of the corresponding

figure. The insets show linear–log plots of Y = m(R,r0)−πR
df

πR
df

versus R, which allow a clear

observation of the oscillations. More details are given in the text.

in linear-log scale. In all these cases, one has that the oscillations are characterized by a
well-defined scaling ratio (b). So, if the epidemic is somewhat coupled to the topology of the
fractal, one may observe temporal log-periodic oscillations in the dynamic observables with
a well-defined time scaling ratio (τ ). By making the conjecture that a dynamic observable,
written in terms of ξ as given by equation (6), obeys DSI [27], then τ becomes properly
coupled to the spatial scaling ratio, namely

b = τ 1/z. (7)

Of course, the detection of soft oscillations in epidemic simulations possesses a difficult
challenge since huge statistics for large simulation times are expected to be necessary. In
fact, in early simulation results of both the contact process [16] and the catalytic oxidation of
carbon monoxide [30] (i.e. the ZGB model) we are unable to detect evidence of oscillations
in the reported data. However, a careful inspection of figures 2(b) and 3(b) of the paper of
Gao et al [31] suggests the presence of soft oscillations in the dynamic behaviour of N(t)

for the simulation of the ZGB model at criticality. This observation is possible due to the
noticeable statistics used (averages one taken over 106 to 2 × 106 different runs), in spite of
the fact that short measurement times (2 × 103) are considered.
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(a)

(b)

(c)

Figure 2. (a)–(c) Log–log plots of the number of active sites (N(t)) versus time, as obtained
for different fractals whose generating cell is shown in the upper-left corner of the corresponding
figure. In all the cases a supercritical, a critical and a subcritical epidemic are shown. The insets
show, in a linear–log plot, the time dependence of the results shown in the main panel modified
after subtracting the modulated power-law fit of the data. Results obtained by fitting the numerical
data by using equation (8) are listed in table 1. More details are given in the text.

4. Results and discussion

Figures 2(a)–(c) show log–log plots of the number of active sites (N(t)) as a function of t,
obtained for different values of the control parameter λ and various fractal substrates (the
generating cell of the corresponding fractal is shown in each figure). In all the cases epidemics
are started by placing a single active site close to the centre of the fractal in an otherwise
vacuum state. For each fractal we have shown the results obtained for three different epidemics
performed close to the critical point (many other epidemics performed in order to approach
criticality are not shown for the sake of clarity). A careful inspection of figure 2(a) reveals the
presence of soft oscillations of the epidemics performed in the SC(3, 1). These oscillations
become more evident when the fractal dimension (lacunarity) is decreased (increased), as
follows from figures 2(b) and (c) corresponding to the SC(4, 2) and SC(6, 4), respectively.
On view of these results and within the context of the already performed discussion on the
interplay between spatial and time DSI, we have fitted the data to a power-law divergence
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(a)

(b)

(c)

-2

-2

-2

-2

Figure 3. (a)–(c). Log–log plots of R2(t)) versus time, as obtained at criticality for different
fractals whose generating cell is shown in the upper-left corner of the corresponding figure. The

insets show linear–log plots of the time dependence of Y = R2(t)−Atze

Atze
. Results obtained by fitting

the numerical data are listed in table 1. More details are given in the text.

modulated by a log-periodic function given by,

N(t) = Atη(1 + B cos(2π log(t)/ log(τ ) + φ)), (8)

where η is an exponent, log(τ ) is the logarithmic period and φ is the phase constant. Also,
A and B are constants. After obtaining the best fits of the data (a summary of the obtained
results is shown in table 1) we proceed to decouple the modulation just by subtracting the
power law to the measured value of N(t), as shown in the insets of figures 2(a)–(c). By using
this procedure the oscillatory behaviour becomes clear beyond any doubt even for the fractal
of lower lacunarity, namely the SC(3, 1) as shown in figure 2(a). It is worth mentioning
that this subtracting procedure also allows us to obtain a quite accurate determination of the
critical point because noticeable upward (downward) deviations of the oscillatory behaviour
are observed when the values of the control parameter are within the active (absorbing) phase
of the system, see the insets of figures 2(a)–(c).

On the other hand, figures 3(a)–(c) show log–log plots of R2(t) versus t as obtained
at criticality for the fractals SC(3, 1), SC(4, 2) and SC(6, 4), respectively. In all the cases
one observes soft log–periodic oscillations that can easily be observed in linear–log plots of
Y = R2(t)−Atze

Atze
versus time, as show in the insets of the corresponding figures.
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Figure 4. Log–log plots of the survival probability of the epidemics P(t)) versus time, as obtained
for three different values of the control parameter close to criticality and for the SC(6, 4) whose
generating cell is shown in the upper-left corner of the figure. The inset shows in a linear–log
scale, the time dependence of the results, obtained at criticality, shown in the main panel modified
after subtracting the modulated power-law fit of the data. Results obtained by fitting the numerical
data are listed in table 1. More details are given in the text.

Table 1. Critical exponents and logarithmic periods obtained by fitting the measured data,
corresponding to different fractals, and for the following observables: (i) number of active sites
(second and third columns), (ii) the mean square displacement of the epidemics from the origin
(fourth and fifth columns) and (iii) the survival probability of the epidemics (sixth and seventh
columns). More details are given in the text.

SC(b, c), k, L η log(τ ) ze log(τ ) δ log(τ )

(3,1), 7, 2187 0.406(2) 0.882(9) 1.047(7) 0.873(18) 0.211(8) –
(4,2), 6, 4096 0.415(2) 1.122(4) 1.071(3) 1.12(2) 0.166(4) 1.18(5)
(6,4), 5, 7776 0.432(3) 1.415(16) 1.090(3) 1.42(2) 0.126(4) 1.41(3)

We also found that the time behaviour of the survival probability of the epidemics (see
equation (2)) is less sensitive to the underlying structure of the fractal. In spite of this
shortcoming we are still able to decouple the oscillations as shown in figure 4 for the case of
the SC(6, 4).

Results corresponding to the best fits of the data obtained by using equation (8) (and
the corresponding functions for P(t) and R2(t)), for the three different fractals studied are
summarized in table 1. We found that—within error bars—the period of the oscillation is
independent of the observable used for its calculation—either N(t), P (t) and R2(t)—further
supporting the procedures used to fit the numerical results. It is also worth mentioning that
the measurements of R2(t) provide a very useful alternative test for the conjecture outlined in
section 3. In fact, according to equations (3) and (6), the exponent ze and the dynamic exponent
z are linked through ze = 2/z. On the other hand, the spatial scaling ratio of the fractal is also
linked to the time scaling ratio of the dynamic process evolving on the fractal (see equation (7)).
Thus, the exponents determined by using equations (3) and (7) are summarized in table 2.
The excellent agreement obtained by comparing the two independent determinations of the
dynamical exponent, and for the three different fractals studied, strongly supports the outlined
conjecture linking the dynamic oscillations of the physical process to geometrical properties
of the underlying media where the process actually takes place.
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Figure 5. Log–log plots of the logarithmic derivative of the number of active sites versus time,
as obtained for the SC(4, 2) whose generating cell is shown in the upper-left corner of the figure.

The inset shows a linear–log plot of Y = V (t)−At
1/ν‖

At
1/ν‖ as function of time.

Table 2. Dynamical exponents (z) (third column) obtained with the aid of the conjectured
equation (7) by using the fundamental (spatial) scaling ratio of each fractal (first column) and the
logarithmic period measured by fitting the oscillations of different physical observables (second
column). For the sake of comparison, independent evaluations of the dynamic exponent as obtained
by measuring the mean square displacement of the epidemics from the origin are listed in the fourth
column. More details are given in the text.

Fractal Observable z 2/ze

SC(3, 1) N(t) 1.85(2)
df = 1.8927 R2(t) 1.84(5) 1.91(2)

SC(4, 2) N(t) 1.863(7)
df = 1.7925 P(t) 1.96(8)

R2(t) 1.86(3) 1.867(5)

SC(6, 4) N(t) 1.82(2)
df = 1.7227 P(t) 1.81(4)

R2(t) 1.83(2) 1.835(5)

So far, we have discussed results obtained at criticality. However, it is known that off-
criticality the Ansatz given by equation (1) can be used in order to compute the logarithmic
derivative, so that one obtains

V (t) = ∂ ln N(t)

∂t

∣∣∣∣
(ε≡0)

∝ t1/ν‖ (9)

that evaluated at criticality (ε = 0) allows the determination of the exponent 1/ν‖ by means of
a suitable fit of the data. The numerical calculation of the log derivative given by equation (9)
is quite demanding because one needs to have, at least, three well-averaged epidemics (one
at criticality and the remaining ones slightly off-criticality). However, as shown in figure 5
for the case of the SC(4, 2), we have achieved enough statistics in order to show a reliable
log–log plot of the logarithmic derivative versus t. Also, figure 5 clearly shows a well-defined
oscillatory behaviour with a logarithmic period log(τ ) = 1.14(2), which yields z = 1.89(3)

in excellent agreement with the values obtained at criticality (see table 1).

9



J. Phys. A: Math. Theor. 41 (2008) 045001 M A Bab and E V Albano

Figure 6. Log–log plots of the number of active sites (N(t)) versus time, obtained close to
criticality, for epidemics launched at randomly chosen sites in the SC(16, 4). The inset shows
(N(t)) versus time, after subtracting the modulated power-law, for λ = 0.291 5750. More details
are given in the text.

As already anticipated, all the results discussed above have been obtained by starting
the epidemics from a site close to the geometrical centre of the fractal. In this way, one
avoids the statistical interference among epidemics having different phase constants (φ in
equation (8)) that is expected to occur for different initial conditions. In fact, we observed
that by averaging epidemics started from different—random selected—sites of the fractal,
the oscillations become severely damped. Figure 6 shows a log–log plot of N(t) versus t
obtained close to criticality for epidemics launched at randomly chosen sites in the SC(4, 2).
One observes that due to the huge statistics—averages are taken over 6 × 105 different
epidemics—one can still, but hardly, observe the power-law behaviour modulated by a log-
periodic oscillation (see the inset of figure 6). The best fit of the data is achieved with
log(τ ) = 1.12(6), in excellent agreement with the results obtained with epidemics started
from a single fixed site (see table 1). This observation points out that the subtle interplay
between the dynamics of the physical process and the topology of the fractal, leading to time
DSI, requires careful measurements in order to avoid the occurrence of interference effect that
may hinder the actual physical behaviour as it would be simply noise.

5. Conclusions

We studied the epidemic behaviour of the contact process in various Sierpinski Carpets,
showing that dynamical observables are subtly coupled to the spatial discrete scale invariance
of the underlying fractal, leading to the occurrence of time DSI. Time DSI becomes evident by
the observation of log-periodic modulations in the power-law behaviour of relevant dynamic
observables of the epidemics.

Our numerical results allow us to successfully test the conjecture that both, spatial (b)

and time (τ ), fundamental scaling ratios are linked according to b = τ 1/z, where z is the
dynamic exponent characteristic of the physical process. The conjecture is further tested by
an independent determination of z performed by measuring the mean square displacement of
the epidemic from the origin.

We expected that the occurrence of time DSI in the physical process occurring on fractal
media exhibiting spatial DSI is no longer restricted to the random walk [24, 26] and the

10
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irreversible phase transition of the CP, but instead it may be a quite general phenomenon. In
fact, apart from our early observation of time DSI in the case of the equilibrium (reversible)
phase transition characteristic of the Ising magnet in fractal media [32], our preliminary results
also confirm its occurrence in archetypical cases such as annihilation reactions among random
walks, coarsening dynamics without surface tension (vorter model) and interfacial behaviour
in growing models.
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[6] Ódor G 2004 Rev. Mod. Phys. 76 663
[7] Loscar E and Albano E V 2003 Rep. Prog. Phys. 66 1343
[8] Albano E V 1994 J. Phys. A: Math. Gen. 27 L881

Clar S, Drossel B and Schwalb F 1996 J. Phys.: Condens. Matter 8 6803
[9] Jensen I 1994 Phys. Rev. E 50 3623

Takayasu H and Tretyakov T 1992 Phys. Rev. Lett. 68 3060
Jensen I 1993 Phys. Rev. E 47 R1

[10] Gassberger P 1982 Math. Biosci. 63 157
[11] Rozenfeld A F and Albano E V 2001 Phys. Rev. E 63 061907
[12] Domany E and Kinzel W 1984 Phys. Rev. Lett. 53 311
[13] Landau D P and Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge:

Cambridge University Press)
[14] Grassberger P and de la Torre A 1979 Ann. Phys. (NY) 122 373

Grassberger P 1989 J. Phys. A: Math. Gen. 22 3673
[15] Albano E V 1992 Phys. Lett. A 168 55
[16] Jensen I 1991 J. Phys. A: Math. Gen. 24 L1111
[17] Mai J, Casties A and Von Niessen W 1992 Chem. Phys. Lett. 196 358
[18] Tretyakov A Yu and Takayasu H 1991 Phy. Rev. A 44 8388
[19] Albano E V 1990 Surf. Sci. 235 351

Albano E V 1990 Phys. Rev. B 42 R10818
[20] Casties A, Mai J and von Niessen W 1993 J. Chem. Phys. 99 3082
[21] Mai J, Casties A and Von Niessen W 1993 Chem. Phys. Lett. 221 197
[22] Sornette D 1998 Phys. Rep. 297 239
[23] Harris T E 1974 Ann. Prob. 2 969
[24] Grabner P J and Woess W 1997 Stoch. Process. Appl. 69 127
[25] Flajolet P and Odlyzko A M 1990 SIAM J. Discrete Math. 3 216
[26] Teufl E 2003 Combin. Probab. Comput. 12 203

Krön B and Teufl E 2004 Trans. Am. Math. Soc. 356 393
[27] Bab M A, Fabricius G and Albano E V 2007 Preprint 0708.2222.bab
[28] Jensen I and Dickman R 1994 Physica A 203 175
[29] Jensen I 1992 Phys. Rev. A 45 R563
[30] Albano E V 1994 J. Phys. A: Math. Gen. 27 431
[31] Gao Z and Yang Z R 1999 Phys. Rev. E 59 2795
[32] Bab M A, Fabricius G and Albano E V 2006 Phys. Rev. E 74 041123

11

http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1016/j.physa.2006.04.007
http://dx.doi.org/10.1103/RevModPhys.76.663
http://dx.doi.org/10.1088/0034-4885/66/8/203
http://dx.doi.org/10.1088/0305-4470/27/23/003
http://dx.doi.org/10.1088/0953-8984/8/37/004
http://dx.doi.org/10.1103/PhysRevE.50.3623
http://dx.doi.org/10.1103/PhysRevLett.68.3060
http://dx.doi.org/10.1103/PhysRevE.47.R1
http://dx.doi.org/10.1016/0025-5564(82)90036-0
http://dx.doi.org/10.1103/PhysRevE.63.061907
http://dx.doi.org/10.1103/PhysRevLett.53.311
http://dx.doi.org/10.1016/0003-4916(79)90207-0
http://dx.doi.org/10.1088/0305-4470/22/17/032
http://dx.doi.org/10.1016/0375-9601(92)90328-J
http://dx.doi.org/10.1088/0305-4470/24/18/008
http://dx.doi.org/10.1016/0009-2614(92)85982-G
http://dx.doi.org/10.1103/PhysRevA.44.8388
http://dx.doi.org/10.1016/0039-6028(90)90810-U
http://dx.doi.org/10.1103/PhysRevB.42.10818
http://dx.doi.org/10.1063/1.465161
http://dx.doi.org/10.1016/0009-2614(93)85185-Q
http://dx.doi.org/10.1016/S0370-1573(97)00076-8
http://dx.doi.org/10.1016/S0304-4149(97)00033-1
http://dx.doi.org/10.1137/0403019
http://dx.doi.org/10.1017/S0963548302005540
http://dx.doi.org/10.1090/S0002-9947-03-03352-X
http://www.arxiv.org/abs/0708.2222.bab
http://dx.doi.org/10.1016/0378-4371(94)90151-1
http://dx.doi.org/10.1103/PhysRevA.45.R563
http://dx.doi.org/10.1088/0305-4470/27/2/026
http://dx.doi.org/10.1103/PhysRevE.59.2795
http://dx.doi.org/10.1103/PhysRevE.74.041123

	1. Introduction
	2. The contact process on fractal media and the simulation method
	3. Spatial and temporal discrete scale invariance
	4. Results and discussion
	5. Conclusions
	Acknowledgment
	References

